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Differential Expression Analysis using RSEM with EBSeq or edgeR 

 

About this Protocol 

Here I will show you how to install and run RSEM, EBSeq, and edgeR. This protocol is for 

users who have assembled transcriptome data and are interested in a differential 

expression analysis between samples. The reason why I am focusing on EBSeq and edgeR 

is because they are the more popular tools for differential expression analysis. For a 

general suggestion, edgeR is preferred when you have a smaller sample size, and EBSeq 

tends to use a more conservative approach when testing differentially expressed genes. 

However, the more time you spend getting to know each program, the better you will be 

able to compare the quality of results, and thus make decisions on which one works best 

with your study. 
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Before you start: 

Computer requirements and recommendations: 

• A Linux system, subsystem, or a Linux virtual box 

• Additional hard drive, other than your Local Disk (C:) drive, with ~1 TB of free space 

• Available memory RAM of at least 30 GB, but preferably more 

• Available CPU of at least 6, but preferable more  

 

Total programs downloaded for this protocol:  

R, RSEM, Bowtie, Bioconductor, EBSeq (also needs blockmodeling and digest), edgeR 

 

Information for working example:  

     Context: For this project, I am interested in comparing the testes and ovaries transcriptomes 

of the same species of fish. I assembled the transcriptome using Trinity, so my main 

transcriptome file is Trinity.fasta. 

     System: I will be using a Linux subsystem installed on Windows 10. I have an additional hard 

drive with 5 TB of free space, 128 GB of RAM and 12 CPU logical processors that I will be using 

to run this demonstration. In my home directory, I have a folder named 'shared’ which I will work 

in for most of the process and examples. 

 

General Pipeline: 

  

 

 

 

 
Please visit and learn more about each of the programs: 

RSEM (https://deweylab.github.io/RSEM/)  

EBSeq (https://bioconductor.org/packages/release/bioc/html/EBSeq.html)  

edgeR (https://www.bioconductor.org/packages/release/bioc/html/edgeR.html) 

 

 

If you run into an issue following this protocol, or have general comments, please feel free 

to contact me at john0533 vandals.uidaho.edu. 

TRINITY  

RNA-Seq (de novo) 

RSEM 

Transcript 

Quantification 

EBSeq or edgeR 

Differential 

Expression Analysis 

https://deweylab.github.io/RSEM/
https://bioconductor.org/packages/release/bioc/html/EBSeq.html
https://www.bioconductor.org/packages/release/bioc/html/edgeR.html
https://www.google.com/url?sa=i&url=http%3A%2F%2Ficon-library.com%2Ficon%2Fat-sign-icon-4.html&psig=AOvVaw22QbSlLIHDVSYwHUyYn2Z-&ust=1591998010818000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCJim4vfc-ukCFQAAAAAdAAAAABAL
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Let’s get started  
 

1. Installing RSEM and Bowtie 

RSEM 

1. From the RSEM website (https://deweylab.github.io/RSEM/), download the latest version 

of the source code (for me this is RSEM v1.3.1). 

 

2. Change to the directory, or folder, that you saved the RSEM zipped file to. Unzip the file 

using gunzip.  

 

3. To compile RSEM, move into the unzipped file and in the command line type:  

> sudo make  

 

4. To install RSEM, run  

> sudo make install 

 

5. Next, we will add RSEM to your PATH, so you can run any RSEM programs from any 

directory. Change directories to your home directory, and open your .bashrc script.  

> nano .bashrc  

 

6. Without modifying pre-existing parts of the file, append the follow to the very end: 

#RSEM 

export PATH=$PATH:~/shared/RSEM-1.3.1/ 

*The path to your RSEM folder might be different then what is stated here. My RSEM 

folder is located in another folder titled “shared”. 

 

Bowtie 

7. Installing Bowtie 

> sudo apt install bowtie 

 

Alternative: Installing Bowtie 2 

8. If you instead want to install Bowtie 2 to run RSEM, navigate to Bowtie’s website and 

download the latest binary version (https://sourceforge.net/projects/bowtie-

bio/files/bowtie2/). For me that is bowtie2-2.3.5.1-linux-x86_64. 

https://deweylab.github.io/RSEM/
https://sourceforge.net/projects/bowtie-bio/files/bowtie2/
https://sourceforge.net/projects/bowtie-bio/files/bowtie2/
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9. Unzip this downloaded folder, and make sure it is somewhere easily accessible.  

 

10. Next, we will add Bowtie2 to your PATH. Change directories to your home directory, and 

open your .bashrc script.  

> nano .bashrc  

 

11. Without modifying pre-existing parts of the file, append the follow to the very end: 

#Bowtie2 

export PATH=$PATH:~/shared/bowtie2-2.3.5.1-linux-x86_64/ 
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2. Installing R, EBSeq, and edgeR 

For installing EBSeq and edgeR, you have two options. Installing on RStudio or in your 

Linux subsystem. I generally prefer to run these programs through my Linux subsystem 

because I am more comfortable with this option. If you want to use any built-in functions 

for generating heat maps and plots, as well as any G.O. analysis, such as those available 

in edge R, then I recommend installing on RStudio.  

 

Installing on RStudio: This is very easy and provides the user with a more GUI feel. To 

accomplish installation on RStudio, follow the steps below: 

 

1. Correctly install RStudio. In short, you should install R before installing RStudio. There are 

many online tutorials you might need to look up if you need further assistance.  

 

2. To install EBSeq: 

> if (!requireNamespace("BiocManager", quietly = TRUE)) 

    install.packages("BiocManager") 

> BiocManager::install("EBSeq") 

> library(EBSEq) #You will need to load this library every time 

you reopen R and want to use EBSeq. 

 

3. To install edgeR: 

> if (!requireNamespace("BiocManager", quietly = TRUE)) 

    install.packages("BiocManager") 

> BiocManager::install("edgeR") 

> library(edgeR) #You will need to load this library every time 

you reopen R and want to use edgeR. 

 

Installing on your Linux subsystem: We will start by installing R (version 3.6.1 “Action 

of the Toes”), and Bioconductor (3.9), which are needed to install EBSeq (version 1.24.0) 

and edgeR (version 3.26.8). 

 

1. To install the correct version of R, first check what version of Ubuntu you have. 

> lsb_release -a 
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2. My version is Ubuntu 18.04 (bionic). Making note of your version, adjust the following 

commands as necessary: 

> sudo apt install apt-transport-https software-properties-common 

> sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 

E298A3A825C0D65DFD57CBB651716619E084DAB9 

> sudo add-apt-repository 'deb https://cloud.r-

project.org/bin/linux/ubuntu bionic-cran35/' 

> sudo apt update 

> sudo apt install r-base 

> R --version  

* If you instead followed instructions from the R website and ran sudo apt-get 

install r-base in your command line, you will have most likely installed R version 

3.4.4. This is not the version we want! Run this to remove this version of R: 

> sudo apt-get remove r-base-core 

 

3. Now we can start R. 

> R 

 

4. Now we will be running commands in R (all commands in this font are for R).  

 > if (!requireNamespace("BiocManager", quietly = TRUE))  

install.packages("BiocManager") 

> BiocManager::install("EBSeq") 

> BiocManager::install("edgeR") 

> install.packages(‘blockmodeling’) 

> install.packages(‘digest’) 

 

5. Once installed, restart your terminal window by closing and reopening.  
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3. Running RSEM 

 

 

 

 

 

 

 

 

We will use RSEM (with the above pipeline) for differential expression analysis. We are not going 

to pre-process or filter any data from Trinity beforehand. The data will go through RSEM as is, 

and filter data through the statistical analysis portion (end) of the process. You will need 5-15 GB 

memory. Your .fasta file should be a resulting assembled reference transcriptome from Trinity, 

and your read files should be trimmed, paired reads from Trimmomatic. We will map each pair 

of read files, one pair at a time, against the reference transcriptome. It will be best to perform 

the following steps from within a folder, that contains your reference transcriptome (.fasta) and 

your read files. Information on this command can be found 

(http://deweylab.biostat.wisc.edu/rsem/rsem-prepare-reference.html). 

 

1. We will start by preparing the reference sequences to run RSEM. This will also build 

indices for bowtie.   

> rsem-prepare-reference --bowtie Trinity.fasta TrinityRef1 

 

*This will build indices for bowtie. If you instead want bowtie2, 

then use the --bowtie2 option. 

 

2. Now we will calculate the expression levels using the reference we prepared and the 

paired read files for each sample, separately.  

> rsem-calculate-expression -p 10 --paired-end 

paired_read_1_forward.fastq paired_read_1_reverse.fastq 

TrinityRef1 Male1 

 

rsem-prepare-reference 

input: reference Genome or 

Transcriptome (.fasta) 

output: RSEM references 

*once per species 

rsem-calculate-expression 

input: RNA-seq reads (.fasta or 

.fastq)  

output: genes.results file 

*for every sample separately 

rsem-generate-data-matrix 

input: genes.results file 

 

output: counts.matrix file 

 

*once per species, but each group 

should be listed together in order 

http://deweylab.biostat.wisc.edu/rsem/rsem-prepare-reference.html
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*-p option is the number of threads to use, or how many times the 

computer should subdivide the overall process and will depend on 

your computer’s memory capabilities.  

*You will need to run this line for each sample. For us, this 

would be run six times for Male 1, Male 2, Male 3, Female 1, 

Female 2, and Female 3. All six will use the same Trinity 

Reference file, TrinityRef1.  

 

3. Now we will calculate the expression levels using the reference we prepared and the 

paired read files. Samples should be listed by group, so for example, if you are interested 

in differential expression between male and female tissue types, have all of one group 

listed first, then the other. Here I list all the males first, then all the females.  

> rsem-generate-data-matrix Male1.genes.results 

Male2.genes.results Male3.genes.results Female1.genes.results 

Female2.genes.results Female3.genes.results > 

RSEM_digi.counts.matrix 

 

*The important output file that will be generated will be 

RSEM_digi.counts.matrix which will be used for differential 

analysis. Additionally, a set of files with the extension 

genes.results will be generated for each sample. These are also 

important for  

 

4. From here, you may run EBSeq through RSEM or if you would like to use EBSeq 

independently (or if you want to use edgeR), skip this step and proceed to the next page.  

 

Using this command, we specify that we want to run the on-board EBSeq function 

through RSEM. We also specify the number of samples within each of our groups. From 

step 3, we should have our males as the first three samples, followed by three female 

samples. In the last part of the command we specify our output file. The output file can 

be read through Notepad++ and copied into an excel spreadsheet. 

> rsem-run-ebseq RSEM_digi.counts.matrix 3,3 

malevsfemale_ebseq_results 
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4. Running EBSeq (Two condition comparison) 

1. Now we can start R. 

> R 

* This will start R. Now we will be running commands in R (all commands in this font are for R). 

Make sure you are in the directory that contains your “RSEM_digi.counts.matrix” file.  

 

2. Load EBSeq package. This will automatically load other required packages.  

 > library(EBSeq) 

 

3. Create a factor descriptor that explains what your ‘treatment’ groups are, in the order 

you placed them. In the example above we have three males and three females (first 

example).   

 > Conditions=as.factor(c(“M”,”M”,”M”,”F”,”F”,”F”)) 

 

4. Now double-check that your conditions specified are accurate. Also check to make sure 

they levels are correctly specified.  

 > Conditions 

 

5. We are going to load your counts matrix into R, into a data matrix named ‘GenMat’. This 

step will not work unless you are in the directory where your digi.counts matrix is. The 

MedianNorm function is a median-by-ratio normalization function. 

 > GenMat<-data.matrix(read.table(file=”RSEM_digi.counts.matrix”)) 

> Sizes=MedianNorm(GenMat) 

 

6. Now we will run EBSeq on our data matrix with the conditions specified which indicates 

which samples belong to which group for comparison. If you have only two conditions, 

then use ‘EBTest’, when you have more then two conditions, use ‘EBMultiTest’. The 

‘maxround’ option is the number of iterations the test should be run. 

 > EBOut=EBTest(Data=GenMat, Conditions=Conditions, sizeFactors=Sizes, maxround=5) 

 

7. These next steps are to move these results into a .csv file, which can then be read in 

OpenOffice or Excel.  

 > PP=GetPPMat(EBOut) 

 > write.csv(PP,file=”DiffExpressionPosteriorProbs.csv”) 
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5. Running EBSeq (Multiple condition comparison) 

1. If you have more than two conditions, for example, if we had added data on juveniles to 

our female and male comparison study, we now have multiple comparisons (or 5 

patterns). For this type of comparison EBSeq will provide a posterior probability of each 

gene being in a particular pattern. The probability value is from a Bayesian approach 

where the priors are all equal- meaning each pattern is equally likely to occur. Here is an 

illustration that might help clarify: 

 

 

 

 

In this figure, Pattern 1 is where all conditions share the same expression level, Pattern 2 

is where the expression level is shared only between Juveniles and Males but not 

Females, Pattern 3 is where the expression level is shared by Juveniles and Females but 

not Males, Pattern 4 is where the expression level is shared by Males and Females but 

not Juveniles, and Pattern 5 is where the expression level is different for three conditions.  

This venn diagram is not an entirely accurate depiction however, as when you increase the 

number of conditions the interpretation can become a bit trickier. Here is an example for 

a 4-condition test, where a venn diagram is not helpful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Males

JuvenilesFemales

P1 

P2 

P3 

P4 

P5 

P5 P5 

J M F

Pattern1 1 1 1

Pattern2 1 1 2

Pattern3 1 2 1

Pattern4 1 2 2

Pattern5 1 2 3
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In this figure, patterns such as Pattern 4 indicate that conditions 1 and 2 have a similar 

expression level and conditions 3 and 4 have a similar expression, but they are different 

from each other. This is a different interpretation than Pattern 9, where conditions 1 and 

2 have a similar expression that is different from expression in condition 3 and 4. Here, 

conditions 3 and 4 do not have a similar expression to each other. This becomes hard to 

interpret, so make sure you consider your experimental design beforehand and 

determine if you need to run two pairwise comparisons or a multi-comparison. 

 

2. We have a similar process as before once we start R.  

> library(EBSeq) 

> Conditions=as.factor(c(“M”,”M”,”M”,”F”,”F”, “J”, “J”, “J”, “J”)) 

 > Conditions 

 > GenMat<- data.matrix(read.table(file= “fish.counts.matrix”)) 

 > PosParti=GetPatterns(Conditions) 

 > PosParti  #These are your expression patterns. 

 > MultiSize=MedianNorm(GenMat) 

 > MultiOut=EBMultiTest(GenMat, NgVector=NULL, Conditions=Conditions, AllParti=PosParti, 

sizeFactors=MultiSize, maxround=5) 

 

C1 C2 C3 C4

Pattern1 1 1 1 1

Pattern2 1 1 1 2

Pattern3 1 1 2 1

Pattern4 1 1 2 2

Pattern5 1 2 1 1

Pattern6 1 2 1 2

Pattern7 1 2 2 1

Pattern8 1 2 2 2

Pattern9 1 1 2 3

Pattern10 1 2 1 3

Pattern11 1 2 2 3

Pattern12 1 2 3 1

Pattern13 1 2 3 2

Pattern14 1 2 3 3

Pattern15 1 2 3 4
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3. We will produce two outputs from this process. The first file is a spreadsheet with all the 

posterior probabilities for each gene, for each pattern. The second file is a spreadsheet 

that gives the pattern with the highest posterior probability for each gene (best fit only). 

 > MultiPP=GetMultiPP(MultiOut) 

 > write.csv(MultiPP$PP, file= “MultiPostProbs.csv”) 

 > write.csv(MultiPP$MAP, file= “MultiPostProbs_MAP.csv”)  
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6. Running edgeR (Two condition comparison) 

1. First, you will start by loading the resulting file from RSEM. edgeR is designed to work 

with actual read counts, not predicted transcript abundances. For this guide, the actual 

read counts for each sample can be found in the RSEM_digi.counts.matrix created 

previously. You might need to delete the gene ID column (then the row number will be 

interpreted as the read name). 
 

Here you can choose to pre-filter your data and impose certain cutoff values. For 

example, you might choose to only keep reads that have an actual count ≥ a value, for at 

least a certain number of samples. If you would like to pre-filter your reads, you can 

open the RSEM_digi.counts.matrix file in Notepad ++, copy and paste into an Excel sheet, 

sort and filter your reads, then save the resulting reads in a data.csv file. There is an 

additional filtering step you can do within edgeR, and for this reason, I typically do not 

pre-filter my data.  

> data<-read.csv(“mydata.csv”, header=T) #load csv 

> rownames(data)=data$gene_id  #rename rows to gene id  

>mydata<-data[,c(-1)]     #remove first column that contained gene id 

 

2. Now we will tell edgeR which samples belong to which experimental group. Then we will 

store the data in a list-based data object (DGEList). Reopen your RSEM_digi.counts.matrix 

file and make note of the order of samples for each column. For this example, we are 

working with three male “M” followed by three female “F” samples.  

> datagroup <- c (“M”,”M”,”M”,”F”,”F”,”F”)  

> d<-DGEList(counts=mydata, group=factor(datagroup)) 

 

3. This step is an optional filtering step. Here we will filter out and remove reads that have a 

CPM value less than 2 in 3 or more samples.  We will also check the library size before 

and after we filter to make sure nothing unexpected or dramatic occurs.  

> d #this shows the library size for each sample, or you can use dim(d) just to see the 

dimensions of everything together 

> keep<-rowSums(cpm(d)>2)>=3 

> d<-d[keep,] 

>d$samples$lib.size <- colSums(d$counts) 
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> d$samples #now we are checking the library size after filtering, you can also use dim(d) 

again 

 

4. Now we will normalize the data. This is only necessary for sample-specific effects (which 

we have in a comparison between males and females). 

> d<-calcNormFactors(d) 

> d$samples #this shows the normalization factors  

 

5. Estimating dispersion using a quantile-adjusted conditional maximum likelihood (qCML). 

This method is recommended for experiments with a single factor (which means it is 

specific to the number of conditions).  

> d1 <- estimateCommonDisp(d, verbose=T) 

> d1 <- estimateTagwiseDisp(d1) 

> plotBCV(d1) #plots the tagwise biological coefficient of variation (square root of 

dispersions) against log2-CPM 

 

6. Testing for differentially expressed genes. Here I use the exactTest() followed by the 

Benjamini-Hochberg false discovery rate with alpha set to 0.05. The exactTest is not the 

Fisher’s exact test but has “strong parallels with Fisher’s exact test” (via edgeR user 

guide). This is specific to the method used for estimating dispersion, if you estimated 

dispersion differentially then described in step 5, find the appropriate significance test 

for you.  

> et <- exactTest(d1) 

> de1 <- decideTestsDGE(et, adjust.method="BH", p.value=0.05)  

> summary(de1) #this describes the number of reads up-regulated in M, down-regulated in 

M (or up-regulated in F), and not significant (which usually will be most reads).  

         M-F 

Down      # 

NotSig #### 

Up        # 
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7. Saving the data. Here you have the option to save the top X number of reads you are 

interested in, or all of them.  

> topTags(et, n=10) #see and save top 10 

> result<-(topTags(et, n=10)$table)  

> write.csv(result, file="topTags_results.csv") 

 

> summary(de1) #add all the reads up, so total number=X 

> result<-(topTags(et, n=X)$table)  

> write.csv(result, file="topTags_results.csv") #save all of the reads 

 

8. Here is an easy way to have an informative plot to visualize the data: 

de1tags12 <- rownames(d1)[as.logical(de1)]  

plotSmear(et, de.tags=de1tags12) 

abline(h = c(-2, 2), col = "blue") 
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7. Running edgeR (Multiple condition comparison) 

For a three (or more)-condition comparison, you will follow many of the same starting 4 steps 

for a two-condition comparison (with appropriate modifications) except for estimating 

dispersion and testing for differentially expressed genes. I highly recommend you plan your 

analysis after reading the user guide for edgeR, especially for more complex comparisons. This 

section will mostly be a condensed version, straight from their user guide. Changes to these two 

steps are described below: 

5. Estimating dispersion using a quantile-adjusted conditional maximum likelihood (GLM). 

First, we create a design matrix.  

> design <- model.matrix(~ Sample + Treatment) 

> d1 <- estimateGLMCommonDisp(d, design) 

> d1 <- estimateGLMTrendedDisp(d1, design) 

> d1 <- estimateGLMTagwiseDisp(d1, design) #to estimate tagwise dispersions 

 

6. Testing for differentially expressed genes using a QL model. 

> group <- factor(c(1,1,2,2,3,3))  

> design <- model.matrix(~group)  

> fit <- glmQLFit(y, design)  

 

7. Comparing between groups. 

> qlf.2vs1 <- glmQLFTest(fit, coef=2) #compare group 2 vs 1 

> topTags(qlf.2vs1) #top 10 genes from comparison between groups 2 and 1 

> qlf.3vs1 <- glmQLFTest(fit, coef=3) #compare group 3 vs 1 

> qlf.3vs2 <- glmQLFTest(fit, contrast=c(0,-1,1)) #compare group 3 vs 2 

> qlf <- glmQLFTest(fit, coef=2:3) #to find genes different between any of the three groups 

> topTags(qlf) 
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8. Alternatively, you can perform a likelihood ratio test to test for differential expression 

> fit <- glmFit(y, design)  

> lrt.2vs1 <- glmLRT(fit, coef=2)  

> topTags(lrt.2vs1) 

 

9. To save the output. 

> result<-topTags(x) 

> write.csv(result, file="topTags_results.csv") 

 


