
Author: Bernadette Johnson
Updated: December 2022

1

How to Install and Use HISAT2 and StringTie

About this Protocol
This protocol is for users who are interested in mapping next-generation sequence reads to a reference

genome. There are similarities between this general pipeline, and one used for de novo assembly

(TRINITY→RSEM), however this requires you also have a reference genome to map to. This guide is useful

for novice bioinformaticians users who would like to set-up and run HISAT2 and StringTie for the first

time. This protocol ends by preparing your StringTie output for use in a differential expression analysis

program such as EBSeq, DESeq2, or edgeR. It is important that you use already trimmed reads for this

protocol. If you do not have trimmed reads, please visit my protocol website:

bernadettebiology.weebly.com/protocols--tutorials.html

I recommend users read the original manual while planning any analysis. Find them here: HISAT2

(http://daehwankimlab.github.io/hisat2/), and StringTie (https://ccb.jhu.edu/software/stringtie/).

BLUF

Computer requirements and recommendations:

• A Linux subsystem, or a Linux virtual box

• Additional hard drive, other than your Local Disk (C:) drive, with ~2 TB of free space.

• Demands on RAM and CPU can be set low (but will have longer run time). I will use 40 GB RAM.

Total programs downloaded for this protocol: make, gcc, libz-dev, g++, samtools, HISAT2, Stringtie, and

Python 3

Information for working example:

Context: For this project, I am interested in mapping trimmed, paired-end reads of male and female

samples of a species of pipefish. I would like to follow this up with a differential expression analysis, so I

will also prepare the data for use in EBSeq. Red text will indicate my specific path or file name.

System: I will be using the Ubuntu subsystem for on Windows 10 (Install Ubuntu on Windows). I have a

total of 5 TB of free space, 128 GB of RAM, and 12 CPU logical processors. In my home directory, I have

a folder named ‘shared’ which I will work in for most of the process and examples.

General Pipeline

HISAT2

Mapping to Reference

Genome

StringTie

Transcript Assembly and

Quantification

EBSeq, DESeq2, edgeR

(Optional Step) Differential

Expression Analysis

https://bernadettebiology.weebly.com/protocols--tutorials.html
http://daehwankimlab.github.io/hisat2/
https://ccb.jhu.edu/software/stringtie/
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview

2

Let's get started

Update and upgrade
1. Update and upgrade your Ubuntu subsystem before starting. Open a new terminal window, then

run the following commands.

> sudo apt-get update

> sudo apt-get upgrade

Install prerequisites
2. Install these programs if they are not already installed. We will need these to install our other

programs.

> sudo apt-get install make

> sudo apt-get install gcc

> sudo apt-get install libz-dev

> sudo apt-get install g++

Installing samtools
3. Install the latest version of samtools. You can download it from the official site

(github.com/samtools/). The latest version for me is samtools v1.16.1. Once it is done downloading,

move the downloaded folder into the desired location or directory. Alternatively, you can use the

command line to download the file into your working directory (this command is below).

> git clone --recurse-submodules

https://github.com/samtools/htslib.git

> git clone https://github.com/samtools/bcftools.git

> cd bcftools

> make

> export BCFTOOLS_PLUGINS=/path/to/bcftools/plugins
For me this is: ~/bcftools

4. Test for installation.
> cd

> samtools --help

#If samtools is properly installed, you will see the usage and

commands guide (see Tips on installing programs section for more

information).

Installing HISAT2
5. Install using command line.

> sudo apt install hisat2

https://github.com/samtools/

3

6. Test for installation.
> cd

> hisat2 --help

Installing StringTie
7. Downloading through GitHub usually insures an up-to-date version. This will download into your

current working directory.

> git clone https://github.com/gpertea/stringtie

 > cd stringtie

 > make stringtie

8. Then we can add StringTie to our PATH to make it easily accessible, even when we are not working in

the downloaded StringTie folder.

 > cd

 > nano .bashrc

Please do NOT change any other part of this file, simply scroll down to the end of the file and

append this to the end:

 #stringtie

 export PATH=$PATH:~/shared/stringtie

*This is my path to my stringtie folder. Your folder might be in a different location. Whenever

you want to check your current PATH, or the location of your folder you can do one of two

things: (1) you can navigate to the folder of interest and use the pwd command, (2) alternatively,

you can navigate to the folder of interest and check the command line that lets you know where

you are (the blue text). The first option gives you the full PATH name, the second starts from ‘~’

which symbolizes your home directory.

You can always check what is on your .bashrc script from any directory, with the command:

> echo $PATH.

9. Test for installation.

> exit

#This will close your terminal window. We want to restart your

session. Open a new terminal window.

> stringtie --help

4

Running HISAT2
10. I am using trimmed, paired-end reads. This means I have used Trimmomatic to remove low quality

and short reads, as well as Illumina adapters. It is important that you use trimmed reads. Installation

and usage of Trimmomatic is not included in this protocol. Please see my website for this protocol:

bernadettebiology.weebly.com/protocols--tutorials.html

11. Start by building the HISAT2 index. You will build an index once per genome. Your genome file

should be in FASTA format (i.e. it should have an extension like .fna, .fasta, or .fa.). We will build the

index in its own folder.

> mkdir hisat2_index #Make a new folder

> mv genome.fna hisat2_index #Move your genome file to folder

> cd hisat2_index #Change directory into folder

> hisat2-build genome.fna genome_index

#Make sure this is the name to your genome file.

12. Now we will align all the read files to the genome. You will need to run this command for each

sample. Depending on the number of samples you have, this will take some time. It might be easier

to open a new text document (such as Notepad ++) type this command out for each sample, double

check it, then run this as a shell script in your terminal.

For this command, please read the HISAT2 manual to determine which parameters are right for your

analysis. I am using the following set of parameters:

• --dta #This option is needed for StringTie.

• -x #This is the folder where you built your genome index. Make

sure this is the path to your folder.

• -1 #This is a list of your forward reads.

• -2 #These are your reverse reads.

• -S #This is an output and is a SAM alignment file for each read.

• Hisat2Output.txt #While your reads are aligning to the genome,

HISAT2 will produce an alignment summary for each read. This

output will be saved to a text file called Hisat2Output.txt.

#First sample, called pipefish1

> hisat2 --dta -x ~/pipefishRNA/hisat2_index/genome_index -1

pipefish1_R1_paired.fastq -2 pipefish1_R2_paired.fastq -S

pipefish1.sam &>> Hisat2Output.txt

https://bernadettebiology.weebly.com/protocols--tutorials.html

5

#Second sample, called pipefish2

> hisat2 --dta -x ~/pipefishRNA/hisat2_index/genome_index -1

pipefish2_R1_paired.fastq -2 pipefish2_R2_paired.fastq -S

pipefish2.sam &>> Hisat2Output.txt

#Keep going until you have run this command for each sample. You

will see the generation of a new .sam file for each sample

successfully completed. Once all of your samples are mapped, you

can open up your Hisat2Output.txt file and check the alignment

scores. A successful run will look like this:

68406586 reads; of these:

 68406586 (100.00%) were paired; of these:

 10014637 (14.64%) aligned concordantly 0 times

 51347569 (75.06%) aligned concordantly exactly 1 time

 7044380 (10.30%) aligned concordantly >1 times

 10014637 pairs aligned concordantly 0 times; of these:

 600779 (6.00%) aligned discordantly 1 time

 9413858 pairs aligned 0 times concordantly or discordantly; of these:

 18827716 mates make up the pairs; of these:

 10258846 (54.49%) aligned 0 times

 6456328 (34.29%) aligned exactly 1 time

 2112542 (11.22%) aligned >1 times

92.50% overall alignment rate

Prepare files for StringTie
13. You will need to convert each .sam file into a .bam file. This command should be run with each

sample’s .sam file. The input file is the .sam file, and the output file is the .bam file.

> samtools view -b -S pipefish1.sam > pipefish1.bam

> samtools view -b -S pipefish2.sam > pipefish2.bam

14. You will also need to sort out your bam files. This command should be run with each .bam file. The

input file is the .bam file, and the output file is the sorted.bam file. I am using 40 GB of memory.

Adjust this value appropriately for the amount of RAM you have.

> samtools sort -m 40G pipefish1.bam -o pipefish1_sorted.bam

> samtools sort -m 40G pipefish2.bam -o pipefish2_sorted.bam

6

Running StringTie
15. Now we will quantify our samples using StringTie. You will run this command for each sorted.bam

file. I generally recommend against using a genome annotation (-G parameter option). There are two

reasons for this. First, it might negatively impact your results if the available genome annotation is

not great. Second, it may introduce transcript naming errors. This may eventually get fixed with new

updates; however, this was an issue at the time of writing this guide. For this reason, I am not using

a genome annotation for this guide.

I am using the following set of parameters:

• -o #This is an output file. It is a .gtf file and provides

information connecting your transcripts to their genomic

location and abundance.

• -A #This is an output and is a .tab file containing abundances

for each transcript.

> stringtie pipefish1_sorted.bam -o pipefish1_gtf.gtf -A

pipefish1_abund.tab

> stringtie pipefish2_sorted.bam -o pipefish2_gtf.gtf -A

pipefish2_abund.tab

16. You will need to merge the transcripts from all samples to produce a single .gtf file. This command

can be extremely long, depending on the number of samples you have and their location. You should

make sure you include all your samples in this one command, otherwise you won’t be merging your

samples. I suggest entering this all in a text file, and either copying and pasting the command into

your terminal or running the text file as a shell script. Here are both options:

#OPTION 1 (using a text file): Your text file should contain

this. Save it as a .txt file or a .sh file.

stringtie --merge \

-o merged_transcripts.gff \

path/to/pipefish1.gtf \

path/to/pipefish2.gtf \

#Then in the command line you can run your text file.

> ./textfile.txt

#OPTION 2 (using command line):

> stringtie --merge -o stringtie_merged.gff

path/to/pipefish1.gtf path/to/pipefish2.gtf

7

17. We will now estimate transcript abundances using the newly generated merged .gff file. This is an

important step for creating table counts for a downstream differential expression analysis.

> mkdir ~/pipefishRNA/stringtie/

#I am making a new directory or folder for all of the files we

are about to generate.

> stringtie pipefish1_sorted.bam -B -e -o

~/pipefishRNA/stringtie/pipefish1_merged.gtf -G

stringtie_merged.gff -A

~/pipefishRNA/stringtie/pipefish1_abund_merged.tab -C

~/pipefishRNA/stringtie/pipefish1_cov_refs_merged.gtf

For this command, I am using the following set of parameters:

• sample_sorted.bam #This is the input file. It contains

information on the RNA-Seq read alignments and their genomic

location.

• -B #This option returns a Ballgown input table file, which will

be useful for generating a table of actual read counts for a

differential expression analysis.

• -e #StringTie will not assemble the input read alignments but

instead will only estimate the expression levels of the

reference transcripts. This option is used with the ‘-G’

parameter to indicate the reference transcripts.

• -o #This is your output .gtf file for the merged transcripts. It

is different than the first one we generated.

• -G #Tells StringTie that you plan to use a file with reference

annotation transcripts. In this case, we are using the

previously generated merged .gff file.

• -A #This is an output file of gene abundances and will be in tab

delimited format (like an Excel spreadsheet).

• -C #This is an output file that contains information on the

transcripts from the reference annotation transcript file that

are fully covered by the reads in your sample file.

• ~/pipefishRNA/stringtie/ #I am directing all of my new output

into a separate folder called “stringtie”. This will make it

easier for the generating a gene count matrix (next step).

8

Producing a gene count matrix for differential expression analysis
18. If your intention is to conduct a differential expression analysis with your transcriptome, it is likely

that you will want to generate a gene count matrix. You will start by making sure all of your output

files, generated in the previous step, are properly organized. To do this, navigate into the folder

containing these outputs. My folder is called stringtie. This folder should contain the following

files: sample_merged.gtf, sample_abund_merged.tab, and

sample_cov_refs_merged.gtf. You will want to place each of the three files per sample,

into their own folder. Each folder should be named with the sample name.

> cd stringtie

#I am moving into my folder called “stringtie”.

> mkdir ~/pipefishRNA/stringtie/pipefish1

#I am making a new folder with the name of my sample

> mv ~/pipefishRNA/stringtie/pipefish1_merged.gtf

~/pipefishRNA/stringtie/pipefish1

> mv ~/pipefishRNA/stringtie/pipefish1_abund_merged.tab

~/pipefishRNA/stringtie/pipefish1

> mv ~/pipefishRNA/stringtie/pipefish1_cov_refs_merged.gtf

~/pipefishRNA/stringtie/pipefish1

#I am moving these three output files into my new sample folder.

#Then you can repeat these steps for each sample.

> mkdir ~/pipefishRNA/stringtie/pipefish2

> mv ~/pipefishRNA/stringtie/pipefish2_merged.gtf

~/pipefishRNA/stringtie/pipefish2

> mv ~/pipefishRNA/stringtie/pipefish2_abund_merged.tab

~/pipefishRNA/stringtie/pipefish2

> mv ~/pipefishRNA/stringtie/pipefish2_cov_refs_merged.gtf

~/pipefishRNA/stringtie/pipefish2

19. In the directory that is equivalent to my ~/pipefishRNA/ (this might include your

hisat_index and stringtie folders), we are going to create a text document describing the

location of our newly organized files. You can either use a text editor like Notepad ++ or use a

program like nano for in line editing.

> nano sample_lst.txt

#We are now in a blank nano environment. Enter in the following

for each sample (make sure you use your sample name and path):

samplename /path/to/samplename.gtf

9

#Each sample should have its own line, and your document should

look similar to the screenshot below. To save press ‘CTRL’ and

‘X’. It will ask if you “Save modified buffer?”, press ‘Y’. It

will say “File Name to Write: sample_lst.txt”, press ‘ENTER’.

> cat sample_lst.txt

#This command can be used to check the contents of the file and

make sure that this step was successful.

20. Check for or install Python 3 first.

> python3 --help #Check for installation, if its not

installed proceed with the next command

> sudo apt-get install python3.6 #This was the version at the

time of the protocol

21. Check to make sure you have the following files within your working directory: stringtie_merged.gff,

prepDE.py3 (this file is from StringTie), sample_lst.txt, and your folder that contains all your sample

outputs generated in step 18 (mine is called stringtie). Now we will run the StringTie python script

using Python.

> python3 prepDE.py3 -i sample_lst.txt

#If it produces a file called gene_count_matrix.csv, then it was

a success. This file contains count matrices for genes and

transcripts. This is the file you will use for your differential

expression analysis in EBSeq, DESeq2, or edgeR.

10

Tips on installing programs

In this How-To document, we install several programs using the command line. A quick and easy way to

check to see if a program is properly installed is to ask the program to display its usage and commands

guide. For example, if we wanted to check our samtools installation we would use:

> samtools --help

If a program is not properly installed, you will instead see a message like this:

If a program is not properly installed, but Linux knows a program with a similar name, you will instead see
a message like this:

If Linux is suggesting the correct program, then most times you can go ahead with its suggestion and
install. You should note the version (arrow) and make sure that is the correct version you want to install.
Linux might suggest an older version than what is currently available. If in this case I accept the suggestion,
I would enter the following command:
 > sudo apt install clustalw

