
Author: Bernadette Johnson
Updated: February 2023

1

How to Install and Use Salmon

About this Protocol
This guide is for novice bioinformaticians users who would like to set-up and run Salmon for the first

time. In this protocol Salmon will be used to map and quantify reads to a reference transcriptome. It is

important that you use already trimmed RNA-seq reads for this protocol and that you have a reference

transcriptome (genome should be well annotated). This protocol can be followed up with a differential

expression analysis.

Users should always read the original manual when planning an analysis:

https://salmon.readthedocs.io/en/latest/salmon.html# and

https://buildmedia.readthedocs.org/media/pdf/salmon/stable/salmon.pdf

For more bioinformatics tutorials: bernadettebiology.weebly.com/protocols--tutorials.html

BLUF

Computer requirements and recommendations:

• A Linux subsystem, or a Linux virtual box

• Additional hard drive, other than your Local Disk (C:) drive, with ~5 GB of free space.

• Demands on RAM and CPU can be set low (but will have longer run time).

Total programs downloaded in this protocol:

curl, zip, unzip, tar, autoconf, grep, cat, CMake, oneTBB, Boost, Salmon

Information for working example:

Context: For this project, I am interested in mapping trimmed, paired-end reads from a species

of fish. Red text will indicate my specific path or file name.

System: I will be using the Ubuntu subsystem for on Windows 10 (Install Ubuntu on Windows).

General Suggested Pipeline

Salmon

Transcript

Quantification by

Mapping or Alignment

tximport

Imports Transcript

Abundances

http://bioconductor.or

g/packages/release/bio

c/vignettes/tximport/in

st/doc/tximport.html

EBSeq, edgeR, or

DESeq2

Differential Expression

Analysis

https://bernadettebiology.

weebly.com/protocols--

tutorials.html

Trimmomatic or

fastp

Trim reads, quality

control and adapter

removal

FastQC and

MultiQC

check quality of reads

after trimming

https://salmon.readthedocs.io/en/latest/salmon.html
https://buildmedia.readthedocs.org/media/pdf/salmon/stable/salmon.pdf
https://bernadettebiology.weebly.com/protocols--tutorials.html
https://ubuntu.com/tutorials/install-ubuntu-on-wsl2-on-windows-10#1-overview

2

Let's get started

Update and upgrade
1. Update and upgrade your Ubuntu subsystem before starting. Open a new terminal window, then

run the following commands. This will take a while if you have not updated and upgraded recently.

> sudo apt-get update

> sudo apt-get upgrade

Install prerequisites
2. Install these programs if they are not already installed. We will need these to install our other

programs.

> sudo apt-get install curl

> sudo apt-get install libcurl4-openssl-dev #curl library

> sudo apt-get install libssl-dev #curl library

> sudo apt-get install zip

> sudo apt-get install unzip

> sudo apt-get install tar

> sudo apt-get install autoconf

> sudo apt-get install grep

> sudo apt-get install cat

#Alternatively, you can combine all these commands into:

> sudo apt-get install curl libcurl4-openssl-dev libssl-dev zip

unzip tar autoconf grep cat

CMake: Please note that using sudo apt install cmake will install an older version.

> sudo apt install -y software-properties-common lsb-release

> sudo apt clean

> wget -O - https://apt.kitware.com/keys/kitware-archive-

latest.asc 2>/dev/null | gpg --dearmor - | sudo tee

/etc/apt/trusted.gpg.d/kitware.gpg >/dev/null

> sudo apt-add-repository "deb https://apt.kitware.com/ubuntu/

$(lsb_release -cs) main"

> sudo apt update

> sudo apt install kitware-archive-keyring

> sudo rm /etc/apt/trusted.gpg.d/kitware.gpg

> sudo apt update

> sudo apt install cmake

#This code is from user Teocci and more details to each step can

be found here: https://askubuntu.com/questions/355565/how-do-i-

install-the-latest-version-of-cmake-from-the-command-line

3

oneTBB:

> git clone https://github.com/oneapi-src/oneTBB.git

> cd oneTBB

> mkdir build

> cd build

> cmake -DCMAKE_INSTALL_PREFIX=/home/joneslab/onetbb
 -DTBB_TEST=OFF ..

> cmake --build .

> cmake --install .

Installing Salmon (Conda version)
3. Conda installation: Use this installation method if you already have a Conda environment (i.e., this:

https://docs.conda.io/en/latest/) on your Linux subsystem. This will allow you to use Salmon only

within the Conda (Python) environment. If you do not have Conda installed, follow the instructions

below for the Linux version or Building from Source installation.

> conda update conda

> conda config --remove channels conda-forge

> conda config --add channels conda-forge

> conda install -c conda-forge -c bioconda salmon=1.9.0

#Make sure you specify the newest version of Salmon to install.

> conda activate #This activates the Conda environment.

> salmon --version #Check to make sure it properly installed.

> conda deactivate #This deactivates the Conda environment.

Installing Salmon (Linux version, or Building from Source)
4. Linux installation: Download the latest version of Salmon. You can download it from the official site

(https://github.com/COMBINE-lab/salmon). The latest version for me is v1.9.0. Please note that

using sudo apt install salmon will install an older version. Do not use this version. Once it is done

downloading, move the downloaded folder into the desired location or directory. Alternatively, you

can use the command line to download the file into your working directory (this command is below).

> git clone https://github.com/COMBINE-lab/salmon.git

> cd salmon

5. There is another program that we need which is called Boost. We are going to install Boost using
CMake, while we also install Salmon locally in the salmon directory.

> cmake -DFETCH_BOOST=TRUE

-DTBB_INSTALL_DIR=/home/joneslab/onetbb

-DCMAKE_INSTALL_PREFIX=/home/joneslab/salmon

-DNO_IPO=TRUE

https://docs.conda.io/en/latest/
https://github.com/COMBINE-lab/salmon

4

> make

#If this was successful you will see a message like: “[100%]

Built target salmon”. If it was not successful you will be

presented with either (Error 1) a specific error code specifying

a program that was not found or (Error 2) the error message

“/usr/bin/ld: error: lto-wrapper”.

(Error 1) For the first error, you will have to read the error

message carefully and perhaps Google to see what program you

must install. For example, “could NOT find CURL (missing:

CURL_LIBRARY CURL_INCLUDE_DIR)” would mean you would need to

install CURL and its libraries using:

> sudo apt-get install curl libcurl4-openssl-dev libssl-dev

(Error 2) If you get a “/usr/bin/ld: error: lto-wrapper” failed

message, you did not include the “-DNO_IPO=TRUE” flag in the

cmake command.

When attempting to fix either error, you must (1) delete the

CMakeCache.txt file, (2) install any programs that you might

need, and (3) rerun the cmake command then the make command.

> make install

#If this was successful you will see a message like:

6. Now we will set the paths. This will make Salmon easily accessible, even when we are not working in
the salmon folder.

 > cd

 > nano .bashrc

#Please do NOT change any other part of this file. Simply scroll

down to the end of the file, append this to the end, and save:

 #salmon

 export PATH=$PATH:~/salmon/bin

 export PATH=$PATH:~/salmon/lib

* This is my path to my folder. Your salmon folder might be in a
different location. Whenever you want to check your current

5

PATH, or the location of a folder you can do one of two things:

(1) you can navigate to the folder of interest and use the pwd

command, (2) alternatively, you can navigate to the folder of

interest and check the command line that lets you know where you

are (the blue text). The first option gives you the full PATH

name, the second starts from ‘~’ which symbolizes your home

directory.

In this example, the path to my salmon folder can be written

either as /home/joneslab/salmon or ~/joneslab/salmon.

> exit

#Re-open a new terminal.

> salmon --help

#If salmon is properly installed, you will see the usage and

commands guide (see Tips on installing programs section for more

information). Check to make sure the version number is up-to-

date.

6

Before Running Salmon
7. For this project, I will be referencing the Srivastava et al., 2020 Genome Biology paper. I will be

running Salmon in mapping-based mode using their selective alignment method (SA).

There are two options for implementing Salmon:

(1) Mapping: Use Salmon to map reads to a reference transcriptome, and then quantify reads.

When to use: This option is for if you only have trimmed reads and have not previously

aligned them.

If you want this option: Follow the steps for Mapping-Based Mode in this protocol.

(2) Alignment: Import files from another mapping program and use Salmon only to quantify:

When to use: This option is for if you already have alignment files that were produced

from a separate program. These programs map reads to a reference transcriptome. BAM

files aligned to a reference genome cannot be used here.

If you want this option: If you already have your BAM files, then use Salmon on

Alignment-based Mode. This protocol is currently only for researchers who want to use

Salmon in Mapping-Based Mode. For this option, you will need to reference Salmon’s

original manual.

Traditionally, Salmon has been used to only quantify reads (option 2). For this option, one would

need to use a separate program that aligns reads to a reference transcriptome and produces

alignment BAM files. These BAM files would then be imported into Salmon for read quantification.

More recently, Salmon has updated their algorithms to include a useful mapping-based mode that

promises to provide a quicker and computationally lighter option.

Additionally, I am using trimmed, paired-end reads. This means I have used Trimmomatic to remove

low quality and short reads, as well as Illumina adapters. It is important that you use trimmed reads.

Installation and usage of Trimmomatic or other trimming programs are not included in this protocol.

Do you already have

BAM alignment

files?

(Your BAM files should be

from an alignment to a

reference transcriptome

not a genome.)
Yes

No

Use Salmon in Mapping-based Mode

You will need: trimmed read files, reference

transcriptome

Use Salmon in Alignment-based Mode

You will need: BAM files, reference

transcriptome

7

Mapping-Based Mode Step 1: Running Salmon for Mapping
8. I will be used an official tutorial as a reference for this section. If you want to test this method out on

mouse data, here is the link to the original protocol:

https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment/

9. Start by preparing your data. For Salmon to run with the selective alignment method, you need to

create something called a “decoy” file. The file will contain a concatenated transcriptome and

genome reference file, in that order. This file will be used to generate an index.

> grep "^>" <(gunzip -c pipefish_assembly.genome.fa.gz) | cut -d

" " -f 1 > decoys.txt

#We are using grep to find and pull out every header “>” in our

genome file. We then pipe “|” the output of our grep command

into our second command cut. This keeps the headers but removes

the DNA sequences.

#In this example, the pipefish genome is also compressed, and we

are using gunzip to unzip the genome and feed it into the

command, but to keep the original genome file compressed. This

will save some space on your computer. If you already have

uncompressed your genome file, then you can alternatively use:

> grep "^>" pipefish_assembly.genome.fa | cut -d " " -f 1 >

decoys.txt

> sed -i.bak -e 's/>//g' decoys.txt

#We are using sed to edit our newly create decoys text file and

remove the “>” part of the header.

To give an example, this is what the starting genome.fa.gz file

looks like:

>Chromosome_1 Syngnathus scovelli, whole genome sequence

cccatcatgctcgtttcttcgattcgatgctggcgctatatagtgcta

>Chromosome_2 Syngnathus scovelli, whole genome sequence

catgctcgtttcttcgattcgatgctggcgctatatagtgctacatac

This is an example of what the decoy text file would look like

after the cut command:

>Chromosome_1 Syngnathus scovelli, whole genome sequence

>Chromosome_2 Syngnathus scovelli, whole genome sequence

This is an example of what the decoy text file would look like

after the sed command:

Chromosome_1 Syngnathus scovelli, whole genome sequence

Chromosome_2 Syngnathus scovelli, whole genome sequence

8

> cat pipefish_transcriptome.fa.gz

pipefish_assembly.genome.fa.gz > gentrome.fa.gz

#Here we are using cat to combine the transcriptome and the

genome together into one file called gentrome. The .fa extension

indicates it is a fasta format style text file, and the .gz

means the files are compressed.

10. Generate an index. The index will help Salmon know the origin of a query sequence more efficiently.

It saves computational power and time. Indexing will take a while depending on how large your

genome is, and how much computational power (threads) you allow for. There are many options for

running this command, so please check which options are best for your analysis.

> salmon index -t gentrome.fa.gz -d decoys.txt -p 16 -i

salmon_index

1. -t #This is an input file. It is a fasta file and contains the

reference transcriptome and genome. The reference

transcriptome sequences should appear first in the file,

followed by the genome sequences.

2. -d #This is an input file. It contains the sequence ids from

the reference genome.

3. -p #This is the number of threads you are allowing Salmon to

use. The default is set to use 2 threads. If you can provide

more than 2 threads, the process will be faster. Check the

number of threads your computer has using the > top -H

command. I have 21 total, but 1 is running so I have 20

available threads. I don’t want to use all 20 because would

like to run other scripts while this command runs, so I am

only using 16.

4. -i #This is an output index files.

5. -k #This indicates the minimum accepted length of a k-mer that

will be used for the quasi-index. If you have shorter reads,

you should have a smaller k. A k of 31 is recommended for 75

bp or longer reads, and is the default when k is not

specified. (I used the default setting so I did not use this

tag in my example).

6. --gencode #This flag is used when the input transcript fasta

is in GENCODE format. It will split your transcript name at

9

the first “|” and this will be how your transcript names

appear on your output file. (My fasta file was not in gencode

format so I did not use this tag in the example.)

11. Check to make sure index has been built. The command should end with “done building index”.

Additionally, you can check for a new folder in your directory called “salmon_index”.

> ls salmon_index #Check for folder called salmon_index.

Mapping-Based Mode Step 2: Running Salmon for Quantification

12. Now we will quantify paired-end reads against the newly built index. There are over 50 different

parameters for this command. Luckily a handful of these parameters are considered more important

than others and I suggest to at least read about those important parameters from the Salmon

manual. For this protocol, I will focus on the ones that I found to be most important for my research.

In this example I have two samples: C4FL and C5FL. These samples are trimmed paired-end reads,

the forward reads are labelled as “R1”, and the reverse reads are labelled as “R2”. You need to run

this command for each individual sample, separately.

> salmon quant -i salmon_index -l A -1 C4FL_R1_paired.fastq -2

C4FL_R2_paired.fastq --validateMappings -o C4FL_transcript_quant

--gcBias --seqBias --softclip -p 18

> salmon quant -i salmon_index -l A -1 C5FL_R1_paired.fastq -2

C5FL_R2_paired.fastq --validateMappings -o C5FL_transcript_quant

--gcBias --seqBias --softclip -p 18

1. -i #This is an input. It is the name of the folder containing
all of our index files.

2. -l #This is our library type. You can specify a specific
library type (read Salmon manual) or you can ask Salmon to

automatically detect this by using the “A” option.

3. -1 #This is a single forward read in fastq format.
4. -2 # This is a single reverse read in fastq format.
5. --validateMappings #This may be a default option depending on

your version of Salmon (and so you may not need to actually

include this tag), but it allows for selective alignment.

6. -o #This will be your output folder.
7. --gcBias #This helps to correct for GC bias in your reads. You

can check for GC bias in your samples by running FASTQC on

your trimmed reads. You can also run this option without

checking for GC bias, as it will not impair the quantification

of samples without GC bias. This is recommended if you plan to

run a differential expression program.

10

8. --seqBias #This helps correct for sequence-specific bias
(specifically random hexamer primer bias). This bias is

sometimes a product of Illumina sequencing, specifically

during cDNA synthesis. This bias is a growing concern in

transcriptome analyses. The method of correction has been

improved and should not be prone to over-fitting if your data

does not have a high level of this bias.

9. --softclip #This causes Salmon to ignore the 3’ and 5’ UTR
regions of your reads. To understand why you would need this,

please read Salmon Warnings and Concerns:1.2.

10. -p #This is the number of threads you are allowing Salmon to
use. The default is set to use 12 threads. If you can provide

more than 12 threads, the process will be faster. Check the

number of threads your computer has using the > top -H

command.

Mapping-Based Mode Step 3: Understanding Output

13. Running the salmon quant command should have generated a new output folder for each sample.
For the example in this protocol this folder is called “sample_transcripts_quant”. I will go over the
most important output files here.

> ls C4FL_transcript_quant

1. aux_info #This contains files that report the amount of bias
observed in your sample.

2. cmd_info.json #This is a record containing information on the
parameters used to run Salmon. These are the parameters you

gave to Salmon. This is important if you want to rerun Salmon

consistently, or if you want to show others how you ran

Salmon. It might look something like this:

3. lib_format_counts.json #This is a record containing some
specific parameters used to run the quantification command.

These parameters are usually what Salmon has inferred from the

input files.

4. logs #Contains salmon_quant.log. This file provides important
information on the number of fragments that mapped and the

overall mapping rate. This is important to check after each

11

run to make sure there are not an unusual or unexpectedly

large proportion of reads that did not properly map. To

understand why you would need this, please read Salmon

Warnings and Concerns:1.2.

5. quant.sf #This is the main output file. It contains (1) Name:
the name of the target transcript from your input files, (2)

Length: the length of the target transcript in nucleotides,

(3) EffectiveLength: the effective length (when you remove

things like GCbias, and other things), (4) TPM: this is the

relative abundance of each transcript, and (5) NumReads: the

number of reads mapping to each transcript.

12

Salmon Warnings and Concerns

Issue 1. Mapping rate is lower than expected: Typically, you would expect to see a mapping rate of 80%
or higher when mapping to a reference transcriptome. There are many things that can influence the
mapping rate and having a lower mapping rate does not necessarily mean there is something wrong
with your data. There are three main things to check when having a lower-than-expected mapping rate:

1.1. Did you trim your reads? The presence of adapters and low-quality reads can influence and
lower your mapping rate. A good way to check if your reads are sufficiently trimmed is by
running FASTQC on your files. Trim your reads using a program like Trimmomatic or fastp.

1.2. Are you mapping to an annotated transcriptome containing only coding sequences? A lower
mapping rate might be expected when mapping to only the coding regions of a transcriptome.
Usually your RNA-seq files will contain many different kinds of RNA. There will be both mRNA
and various forms of non-coding RNA (rRNA, tRNA, miRNA, siRNA, and so on). mRNA codes for
proteins, and this is what your annotated reference transcriptome is based on. Therefore, when
you attempt to map a file containing multiple different RNAs to a reference containing only
coding sequences you are only mapping a subset or your file, the portion containing the mRNA.
For example, if you were mapping to an entire reference genome you would expect your
mapping rate to be extremely high (around 90%). This is because you can map to non-coding
regions. When mapping to an annotated transcriptome, having a mapping rate of around 50% is
not uncommon.

If you plan to map to an annotated transcriptome, make sure that this annotation is fairly
complete or “well-annotated”. This can be determined by looking over an annotation report. If
your organism has a genome available via NCBI, you can check the “Genome Assembly and
Annotation report”. Check the number of CDS (protein coding genes). Is it what you expect from
your organism? Does that number align with the estimated genome size of the organism?

Finally, your mRNA reads might
have an untranslated region on
both ends (5’ and 3’ UTR). These
are not coding regions, and thus
are not included in your reference
CDS-only transcriptome. Salmon is fairly conservative when it attempts to find matches. For this
reason, you should allow Salmon to ignore both of these ends that do not match up by using the
--softclip option when quantifying.

13

Issue 2. Strand bias detected: If you see this warning: “Detected a *potential* strand bias > 1% in a
unstranded protocol check the file: transcripts_quant/lib_format_counts.json”.

Start by opening the file lib_format_counts.json and find “strand_mapping_bias”. A perfectly unbiased
ratio would be 50% or have strand mapping bias: 0.50. A warning is given with anything above 1%, so for
example 0.52 would produce this warning. If your strand mapping bias is not too far off, you might be
okay ignoring this warning. An extreme example would be like what is in the image 0.28 or 28%.

Strand mapping bias will be influenced by how you described the library type specifically the second part
specifying if the protocol is stranded or unstranded. This depends on how you prepared the libraries for
your samples. You might need to manually specify your library type instead of allowing Salmon to
automatically determine this. It is also possible that one of your input files are not in the correct format
and this file would need to be reformatted.

14

Tips on installing programs

In this How-To document, we install several programs using the command line. A quick and easy way to

check to see if a program is properly installed is to ask the program to display its usage and commands

guide. For example, if we wanted to check our installation of a program called samtools we would use:

> samtools --help

If a program is not properly installed, you will instead see a message like this:

If a program is not properly installed, but Linux knows a program with a similar name, you will instead see
a message like this:

If Linux is suggesting the correct program, then most times you can go ahead with its suggestion and
install. You should note the version (arrow) and make sure that is the correct version you want to install.
Linux might suggest an older version than what is currently available. If in this case I accept the suggestion,
I would enter the following command:
 > sudo apt install clustalw

